Category: CONTROL TECHNIQUES FOR ELECTRIC DRIVES

Symmetrical Optimum

Symmetrical Optimum: Symmetrical Optimum – Sometimes automatic control systems contain integrating also besides firstĀ order delay elements, proportional elements and deadzones. Such a system when compensated on the basis of magnitude optimum discussed in the previous sections will become oscillatory with zero damping. As has already been explained the magnitude optimum utilizes a PI controller to […]

Uncompensated Large Time Constants

Uncompensated Large Time Constants: It is possible to compensate only one Uncompensated Large Time Constants using a PI controller. A PID controller is used to compensate for two large time constants. On technical grounds, compensation of more than two constants using a PID Therefore if a transfer function has more than two dominant poles, only […]

Exponential Variation of the Input to the Controller

Exponential Variation of the Input to the Controller: The linear Exponential Variation of the input to the Controller, discussed in the foregoing section, is too involved to achieve by means of circuits using discrete elements. On the other hand a simple RC circuit connected at the input of the controller provides an input which varies […]

Design of Controllers for Linearly Varying Inputs

Design of Controllers for Linearly Varying Inputs: The Design of Controllers for Linearly Varying Inputs discussed in the foregoing sections are for the step input. The performance has been found to depend very much upon the value of integration time in relation to the uncompensated time constant of the plant. A control system is normally […]

Controller Transfer Function

Controller Transfer Function: While a Controller Transfer Function is designed to improve the behavior of a given control system in practice it is very difficult to realize such a controller because of the availability of components. The actual time constant of the controller may deviate from the theoretically designed value. Also the operating conditions may […]