AC Analysis of FET Circuits

Frequency Response of FET Amplifier

Frequency Response of FET Amplifier: Low-Frequency Response – The low Frequency Response of FET Amplifier circuits is determined by exactly the same considerations as for BJT circuits. The lower cutoff frequency is normally set by a source bypass capacitor, and it can be affected by coupling capacitors. High Frequency Response: Unlike BJTs, a device cutoff […]

Frequency Response of FET Amplifier Read More »

FET and BJT Difference

FET and BJT Difference: FET and BJT Difference (CS, CD, and CG Circuit Comparison) – Table 11-1 compares Zi, Zo and Av for CS, CD, and CG circuits. As already discussed, the CS circuit has voltage gain, high input impedance, high output impedance, and a 180° phase shift from input to output. The CD circuit has high

FET and BJT Difference Read More »

Common Gate Circuit

Common Gate Circuit: The FET Common Gate Circuit (CG) shown in Fig. 11-19 uses voltage divider bias. The ac output is taken from the drain terminal, and an external load (RL) is capacitor-coupled to the drain, exactly as in the case of a common-source circuit. Unlike a CS circuit, the ac input for the CG

Common Gate Circuit Read More »

Common Source Circuit Analysis

Common Source Circuit Analysis: A FET Common Source Circuit Analysis is shown in Fig. 11-­6. With the capacitors treated as ac short-circuits, the circuit input terminals are the gate and source, and the output terminals are the drain and the source. So, the source terminal is common to both input and output, and the circuit

Common Source Circuit Analysis Read More »

FET Equivalent Circuit Model

FET Equivalent Circuit Model: The complete FET Equivalent Circuit Model is shown in Fig. 11-5(a). It is seen that tilt source terminal is common to both input and out, so this is a common-source equivalent circuit. Resistor RGS between the gate and source terminals is the resistance of the reverse-biased gate-source junction, and Cgs is

FET Equivalent Circuit Model Read More »

Coupling Capacitors

Coupling Capacitors: Coupling Capacitors are required at a circuit input to couple a signal source to the circuit without affecting the bias conditions. Similarly, loads are capacitor-coupled to the circuit output to avoid the change in bias conditions produced by direct coupling. Input and output Coupling Capacitors (C1 and C3) and are shown in the FET circuit

Coupling Capacitors Read More »

Scroll to Top