Category: RADAR SYSTEMS

CW Doppler Radar Block Diagram

CW Doppler Radar Block Diagram: A simple CW Doppler Radar Block Diagram, such as the one shown in Figure 16-14, sends out continuous sine waves rather than pulses. It uses the Doppler effect to detect the frequency change caused by a moving target and displays this as a relative velocity. Since transmission here is continuous, […]

Phased Array Radars

Phased Array Radars: Phased Array Radars – Introduction With some notable exceptions, the vast majority of radars have to cover an area in searching and/or tracking, rather than always being pointed in the same direction. This implies that the antenna will have to move some limited beam movement can be produced by multiple feeds or […]

Frequency Modulated Continuous Wave Radar

Frequency Modulated Continuous Wave Radar: The greatest limitation of Doppler radar, i.e., its inability to measure range, may be overcome if the transmitted carrier is Frequency Modulated Continuous Wave Radar. If this is done, it should be possible to eliminate the main difficulty with CW radar in this respect, namely, its inability to distinguish one […]

Radar Beacons

Radar Beacons: A Radar Beacons is a small radar set consisting of a receiver, a separate transmitter and an antenna which is often omnidirectional. When another radar transmits a coded set of pulses at the beacon, i.e., interrogates it, the beacon responds by sending back its specific pulse code. The pulses from the beacon, or […]

Doppler Effect in Radar

Doppler Effect in Radar: The apparent frequency of electromagnetic or sound waves depends on the relative radial motion of the source and the observer. If source and observer are moving away from each other, the apparent frequency will decrease, while if they are moving toward each other, the apparent frequency will increase. This was postulated […]