## Inverse Transformation:

We already discussed Laplace transforms of a functions f(t). If the function in frequency domain F(s) is given, the Inverse Transformation can be determined by taking the partial fraction expansion which will be recognizable as the transform of known functions.

### Laplace Transform of Periodic Functions:

Periodic functions appear in many practical problems. Let function f(t) be a periodic function which satisfies the condition f(t) = f(t+T) for all t > 0 where T is period of the function. ### The Convolution Integral:

If F(s) and G(s) are the Laplace transforms of f(t) and g(t), then the product of F(s) G(s) = H(s), where H(s) is the Laplace transform of h(t) given by f(t) *g(t) and defined by Proof:

Let By definition By changing the order of integration of the above equation, we have Put t – τ = y, and we get Therefore, τ defines the convolution of functions f(t) and g(t) and is expressed symbolically as This theorem is very useful in frequency domain analysis.

Scroll to Top