Category: MICROPROCESSORS AND CONTROL OF ELECTRIC DRIVES

Margin Angle Control of Synchronous Motors

Margin Angle Control of Synchronous Motors: The commutation Margin Angle Control of Synchronous Motors is defined as the angle measured from the end of commutation to the crossing of the phase voltage which was under commu­tation (natural firing instant). For satisfactory operation, without commuta­tion failure, this margin angle must be greater than the turn off […]

Inverter Control using Terminal Voltage Sensing

Inverter Control using Terminal Voltage Sensing: The Inverter Control using Terminal Voltage Sensing of the synchronous motor is obtained using the triggering pulses to the inverter which are synchronized with the rotor position. These signals are obtained by processing the phase reference signals P1,P2,P3 and a high frequency signal S4 obtained from a shaft encoder. This shaft encoder […]

Microprocessor Control of a Current source Inverter Fed Synchronous Motor

Microprocessor Control of a Current source Inverter Fed Synchronous Motor: A drive system employing a Current source Inverter Fed Synchronous Motor has the following features: A four quadrant drive can be accomplished very easily. A self control, which synchronises the gating pulses of the inverter with rotor position, provides an improved steady-state and dynamic performance. […]

Microprocessor Control of Synchronous Motor Drives

Microprocessor Control of Synchronous Motor Drives: Variable speed drives employing Microprocessor Control of Synchronous Motor Drives are becoming very popu­lar in industrial applications. They are an immediate solution for high power reversible drives and are becoming competitors to dc and induction motor drives. The Microprocessor Control of Synchronous Motor Drives operates at leading power factors […]

Contact us