Tag: Second Order System

Relative Stability from the Nyquist Plot

Relative Stability from the Nyquist Plot: Relative Stability from the Nyquist Plot – The considerations discussed above provide information about the absolute stability of the system, i.e., whether the system is stable or not. An equally important system behaviour to be considered is the relative stability. The relative stability is indicative of how various poles […]

Correlation Between Frequency and Transient Response

Correlation Between Frequency and Transient Response: As has been stated, the use of frequency response for the design of control systems requires a Correlation Between Frequency and Transient Response. Time response specifications are available for the performance of a system. These must be translated to frequency response. There must be frequency domain specifications also, corresponding […]

Polar Plot for Frequency Response

Polar Plot for Frequency Response: One of them is the Polar Plot for Frequency Response representation. The transfer function in the frequency domain is obtained by substituting jω for s as complex function of ω. It is separated into real and imaginary parts which are plotted on the real and imaginary axes to get the […]

Frequency Response Transfer Function

Frequency Response Transfer Function: The previous sections- show that with the time response of a system, even though it is a direct method of analysis, the adjustment of the parameters to give a satisfactory time domain performance is rather tedious particularly with higher order systems. On the other hand methods utilising Frequency Response Transfer Function […]

Transfer Function of a Field Controlled DC Motor

Transfer Function of a Field Controlled DC Motor: The speed of a dc motor can be varied by varying the field current. The speed can be increased beyond base speed by decreasing the field current. The Fig. 6.8(c&d) shows the Transfer Function of a Field Controlled DC Motor. In this type of control constant torque operation […]